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Abstract: - In this paper we develop mathematical models for 3-D hyperbolic heat equation. This equation 
describes the mathematical models for steel quenching in highly agitated water and wave power of energy by 
waves of ocean surface. 1-D model is obtained from 3-D problem by conservative averaging method. We 
construct their exact analytical solutions by the Green function method. We solve problem with constant initial 
conditions in the form of triple or one series. We solve time reverse problems for the determination of the initial 
heat flux. Approximate solution of 1-D hyperbolic heat equation is obtained by finite difference method, 
including solution with exact spectrum. The conservative averaging method till now was used with polynomial 
approximation, but here we use hyperbolic approximation. 
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1 Introduction 
The wave power is the transport of energy by ocean 
surface waves. Wave-power generation currently 
is not a widely employed commercial 
technology, although there have been attempts 
to use it since at least 1890 [1]. The production of 
electricity in sea or ocean from wave or wind energy 
is an interesting idea [2], [3], [14]. See also the 
papers [7], [8] and [32]. 
Contrary to traditional method the intensive 
quenching process uses environmentally friendly 
highly agitated water or low concentration of 
water/mineral salt solutions [4] - [6]. Traditionally 
for the mathematical description of the steel 
quenching the classical heat conduction equation is 
used. We have proposed to use hyperbolic heat 
equation [9]-[13], [15], [16] for more realistic 
description of the intensive quenching (IQ) process. 
Hyperbolic heat equation is widely used in different 
fields [29], [30]. 
The idea of  the usage of hyperbolic heat equation 
can be easily transferred to completely different 
sector of application - to the generation of electricity 
in sea or ocean by the usage of wave energy. Here 
we describe the equipment in development of both - 
in time as well as in spatial arrangement of 
equipment using the three-dimensional hyperbolic 
heat equation. Therefore it is important to examine 
not only the development of equipment in time, but 
also the movement of its different components. We 
consider three-dimensional and one-dimensional 

statement for non-homogeneous equation with non-
homogeneous boundary conditions.  
Naturally we would like to use physically real 
parameters for numerical calculations, and that is 
why we choose parameters from the intensive steel 
quenching process. The problem for wave power 
energy is only in the investigation phase, without 
concrete physical parameters [2], [3] and [14]. 
We solve direct and time inverse problems with 
Green function methods. In the case of intensive 
steel quenching process constant initial conditions 
are very natural. In this paper we have solved 3-D 
problem as triple series solution and 1-D problem as 
single series solution. 
 
 

2 3-D Problem for Wave Power 
 
2.1 Problem Formulation 
Here we offer to consider the description of system 
in time and space. We consider the following partial 
differential equation: 

2 2 2 2
2

2 2 2 2

2( , , , ), ,  

(0, ), (0, ), (0, ), (0, ].

U U U U Ua
t t x y z

kCU F x y z t a
c

x l y b z w t T

τ

ρ

 ∂ ∂ ∂ ∂ ∂
+ = + + − ∂ ∂ ∂ ∂ ∂ 

+ =

∈ ∈ ∈ ∈

    

            (*)            

Here c  is specific heat capacity, k - heat 
conductivity coefficient, ρ - density, τ - relaxation 
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time. The source term ( , , , )F x y z t can be from 
different parts of the same device or outer source, for 
example, wind source. As the first step we use well 
known substitution: 

( , , , ) exp ( , , , ).
2
tU x y z t U x y z t
τ

 = − 
 

  

After transformation partial differential equation can 
be written in the form: 

2 2 2 2
2

2 2 2 2

2
21 1( , , , ), , ,

4
1( , , , ) exp ( , , , ).

2

U U U Ua CU
t x y z

aF x y z t C C a

tF x y z t F x y z t

τ

ττ τ τ

τ τ

 ∂ ∂ ∂ ∂
= + + − + ∂ ∂ ∂ ∂ 

 = − = 
 
 =  
 





     (1)           

The initial conditions for the function ( ), , ,U x y z t  
are assumed in following form: 

00
( , , ),

t
U U x y z

=
=        (2) 

1
0

( , , ).
t

U U x y z
t =

∂
=

∂
       (3) 

From the practical point of view in the steel 
quenching the condition (3) can be unrealistic. As 
additional condition we assume that the temperature 
distribution and the heat fluxes distribution at the end 
of process are given (known): 

( , , ),Tt T
U U x y z

=
=                  (4) 

1 ( , , ).T
t T

U U x y z
t =

∂
=

∂
                                         (5) 

In the case of wave energy we can assume different 
non-homogeneous boundary conditions:  
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x l

hU U y z t
x k
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∂ + ∂ 
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 ∂
+ ∂ 

=                 (10) 

( )3 6 , , 1, 2,3, .
z w

U U x y t i
z

gβ
=

∂ + = ∂ 
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Here ih  is heat exchange coefficient. In fact it is 
possible to look at other types of boundary 
conditions: first (Dirichlet) and second (Neumann) 
type. 
 
2.2. Solution of 3-D Problem 
Firstly we assume that we have non-homogeneous 
Klein-Gordon equation-with source term: 0.C ≥  
The solution in three-dimensional problem is in 
following form: 
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( , , ) ( , , , , , , )
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The Green function [19] - [21] for initial-boundary 
problem for Klein-Gordon equation ( 0C ≥ ) is 
known; see [21]: 
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The eigenvalues , ,m n kλ µ ν  are positive roots of the 
transcendental equations:  
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There is an interesting situation, if both additional 
conditions (4), (5) are known. In this case we 
introduce new time argument by formula 

.t T t= −                                          (13) 
The formulation for new time variable is following: 
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Similar to (12) the solution of inverse problem looks 
like: 
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We transform the expression for ( ), , ,H x y z t  in 
form: 
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For the heat flux in time we have the expression:  
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From last expression at t T=  we have solution for 
the time inverse problem: 
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(16) 

If only one additional condition of (4) and (5) is 
given from the solution (15) we obtain 1st kind 
Fredholm integral equation for the determination of 
unknown initial heat flux [15]. 
  
2.3. Solution for Constant Initial Conditions 
Intensive steel quenching process with constant 
initial conditions is very natural [9]-[13]. We have 
homogeneous equation (1) and homogeneous 
boundary conditions (6)-(11). We would like to 
finish the three dimensional solution with a 
simplification for constant initial conditions: 
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 Solutions of time direct problem is these, see (12): 
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We can integrate both integrals. For 0J : 
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Similarly we can integrate second integral 1J :  
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We have the solution in the form of two triple series 
(18), (19). For the heat flux we have an expression: 
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 Finally for 2J  we have: 

( )

( ) ( ) ( )
2

1 1 1

sin
( , , , ) 8

sin sin sin

m m

m n k mnk m n k

n n k k mnk

x
J x y z t

E

y z t

λ ε
λ µ ν

µ ε ν ε ρ

∞ ∞ ∞

= = =

+
= −

+ + ×

∑∑∑
 

 
( ) ( )

( ) ( )
( ) ( )

cos cos

cos cos

cos cos .

mnk m m m

n n n

k k k

l

b

w

ρ ε λ ε

ε µ ε

ε ν ε

× − +  
× − +  
× − +  

 

3 Solution of One Dimensional 
Problem for IQP 

 
3.1. Solution for One Dimensional Problem 
We will start with a formulation of the mathematical 
model of the steel plate which is relatively thin in y 
and z directions: , .w l b l<< <<  They show that 
rectangle is thin and narrow. In accordance with the 
conservative averaging method [17], [18], we 
introduce the following integral averaged value (one 
space-dimensional function): 
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Additionally: 
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Integrating the right hand side of 3-D equation (1) in 
the directions y and z, we obtain: 
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The last term can be transformed as follows: 
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Taking into account the heat exchange with 
environment, i.e. boundary conditions (7), (8), (10) 
and (11), we obtain:  
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This allows us to use the simplest approximation – 
by constant – for the function ( , , , )U x y z t  in 

the ,y z − directions: ( )( , , , ) ,U x y z t u x t=  

As a result we obtain a 1-D differential equation: 
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where the source term is as follows: 
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Initial conditions are as follows: 
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The boundary conditions (6) and (9) remain in the 
same form: 
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It is important to mark that one-dimensional 
approach is exact only if the solution is 
approximated with a constant in the second and 
third space directions.  
Foremost, we assume that we have a non-
homogeneous Klein-Gordon [21], [31] equation 
with a source term 0.c ≥  Solution of this one-
dimensional direct problem (22)-(26) is well known 
[19], [20].Green function is given in [21]: 
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The Green function has the following representation 
([19]-[21]): 

( )
2

1

( ) ( )sin
( , , ) ,i i i

i i i

x t
G x t

ϕ ϕ ξ µ
ξ

ϕ µ

∞

=

=∑       (28) 

( ) ( )

( )

1

2 22
2 11 1 1

2 2 2 2 2
1

2 2

( ) cos sin ,

1 ,
2 2 2

.

i i i
i

i
i

i i i i

i i

x x x

l

a cτ

αϕ λ λ
λ

λ αα α βϕ
λ λ λ λ β

µ λ

= +

  +
= + + + 

+ 

= +

 

The eigenvalues iλ  are positive roots of the 
transcendental equation:  

2
1 1

1 1

tan( ).lλ α βλ λ
α β
−

=
+

               (29) 

It is easy to write out, so called, “wave energy” [31]: 
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( ) ( )2

1

sin
.i

w
i i

t
I t

µ
µ

∞

=

=∑                (30)             

Right now we look at case 2 20, 0.ic a cτ λ< + < In 
this case the Green function has different form: 

( )

( )

2 2

2 2 21

2 2

2 2 2
1

( ) ( )sinh
( , , )

( ) ( )sin
.

m i i i

i i i

i i i

i m i i

x t a c
G x t

a c

x t a c

a c

τ

τ

τ

τ

ϕ ϕ ξ λ
ξ

ϕ λ

ϕ ϕ ξ λ

ϕ λ

=

∞

= +

+
=

+

+
+

+

∑

∑

 (31) 

Here the natural number m in the both sums is given 
by inequalities:  

2 2

2 2

0, 1, ,

0, 1, .
i

i

a c i m

a c i m
τ

τ

λ

λ

+ < =

+ ≥ = + ∞
  

In this case “wave energy” [31] has equality: 

( )
( )2 2 2

0 2 21

sinhm i

i i

t a c
I t

a c

τ

τ

λ

λ=

+
= +

+
∑   (32) 

( )2 2 2

2 2
1

sin
.

i

i m i

t a c

a c

τ

τ

λ

λ

∞

= +

+
+

+
∑     

As it was told earlier, initial condition (24) is 
unrealizable from the experimental point of view, 
and the 0 ( )v x  must be calculated theoretically. The 
differentiation of the solution (23) gives:  

2

0 2
0

( , ) ( ) ( , , )
l

u x t u G x t d
t t

ξ ξ ξ∂ ∂
= +

∂ ∂∫   

( )0
0

( ) ( , , ) , .
l

v G x t d H x t
t t

ξ ξ ξ∂ ∂
+ +

∂ ∂∫               (33) 

The additional conditions (4) and (5) at the end of 
the process regarding ( ),u x t  are as follows: 

( ) 1

0 0

( ),

( ) ( , , ) ,

Tt T
b w

T T

u v x

v x bw dy U x y z dz

=

−

=

= ∫ ∫
  (34) 

and 

( ) 1 1

0 0

( ),

( ) ( , , ) .

T
t T

b w

T T

u w x
t

w x bw dy U x y z dz

=

−

∂
=

∂

= ∫ ∫
  (35) 

The solution (27) at the final moment t T=  gives: 
 

( )

0
0

0
0

( ) ( ) ( , , )

( ) ( , , ) ,

l

T
t T

l

v x u G x t dt

v G x T d H x T

ξ ξ ξ

ξ ξ ξ

=

∂= +
∂

+ +

∫

∫

 

or:  

 0 0
0

( , ) ( ) ( ).
l

K x v d f xξ ξ ξ =∫               (36) 

Here 

0 0
0

( ) ( ) ( ) ( , , )
l

T
t T

f x v x u G x t d
t

ξ ξ ξ
=

∂
= − −

∂∫  

( ), , ( , ) ( , , ).H x T K x G x Tξ ξ− =   
We have to use regularization method for this ill-
posed problem.  
There is an interesting situation if both additional 
conditions (4) and (5) are known – we may introduce 
a new time argument (13). 
The main differential equation (22) remains in its 
form, only the source term changes: 

( )
2 2

2
2 2 , ,u ua cu f x T t

t xτ
∂ ∂

= − + −
∂ ∂





  (37) 

(0, ), (0, ].x l t T∈ ∈  
The boundary conditions (25), (26) change similarly: 

( )

( )

1 1

1 4

0
,

.

x

x l

u u T t
x

u u T t
x

g

g

α

β

=

=

 
 
 

 
 
 

∂ − −
∂

∂ + −
∂

=

=





   (38) 

Both additional conditions transform to initial 
conditions for the equation (27): 

0

0

( ),

( ).

Tt

T
t

u v x

u w x
t

=

=

=

∂
= −

∂







    (39) 

The solution of the direct problem (37)-(39) is 
similar to the solution (23): 

( )
0

0

( , ) ( ) ( , , )

( ) ( , , ) , .

l

T

l

T

u x t v G x t d
t

w G x t d H x t

ξ ξ ξ

ξ ξ ξ

∂=
∂

− +

∫

∫

 





  (40) 

The last term can be written in the following form: 

( ) ( )

( )

2
1

2
4

, ( ,0, )

( , , )

T

T t
T

T t

H x t a g G x t T d

a g G x l t T d

τ

τ

τ τ τ

τ τ τ

−

−

= − − +

+ − + +

∫

∫
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( )
0

, ( , , ) .
T l

T t

d f G x t T dτ ξ τ ξ τ ξ
−

− +∫ ∫


     (41) 

For the heat flux we have an expression similar to 
the formula (27): 



( )

2

2
0

0

( , ) ( ) ( , , )

( ) ( , , ) , .

l

T

l

T

u x t u G x t d
t t

v G x t d H x t
t t

ξ ξ ξ

ξ ξ ξ

∂ ∂=
∂ ∂

∂ ∂− +
∂ ∂

∫

∫

 








     

From here, a nice explicit representation of the 
necessary initial heat flux immediately follows: 



( )

0
0
2

2
0

( ) ( ) ( , , )

( ) ( , , ) ,

l

T t T

l

T t T t T

v x v G x t d
t

u G x t d H x t
tt

ξ ξ ξ

ξ ξ ξ

=

=
=

∂= − +
∂

∂ ∂+
∂∂

∫

∫















 

(42) 
We would like to finish the section with a 
comparison remark about the obtained solutions of 
the time inverse problem and the solution from paper 
[9]. The main distinction is between Green functions. 
In the paper [9], authors have used the Green 
function for the classical (parabolic) heat equation, 
but here – we have used the Green function for the 
wave (hyperbolic) equation.  
 
3.2. Simplifications for Homogeneous Initial 
Conditions 
We would like to finish the one dimensional 
solution with a simplification for constant initial 
conditions: 

0 00

0 0
0

( ) ,

( ) .

t

t

u u x u const

u v x v const
t

=

=

= = =

∂
= = =

∂

              (43) 

The solution of the time direct problem is the 
following (see (27)): 

( )

0
0

0
0

( , ) ( , , )

( , , ) , .

l

l

u x t u G x t d
t

v G x t d H x t

ξ ξ

ξ ξ

∂= +
∂

+

∫

∫

            (44) 

Intensive steel quenching process with initial 
conditions (43) is very natural [4]-[6], [9] - [13], 
[15], [16]. We have the homogeneous equation (31) 
and the homogeneous boundary conditions. It means 
that we have: 

( ), 0.H x t =  
The solution (27) can be simplified as follows: 

0 0
0 0

1 0

( , ) ( , , ) ( , , )

.

l l

u x t u G x t d v G x t d
t

I I

ξ ξ ξ ξ∂
= +

∂

= +

∫ ∫  

We can integrate both integrals. For the 0I : 
 

( )

( )

0 0 2
1 0

0 2
1

( )sin
( )

( )sin
,

l
i i

i
i i i

i i
i

i i i i

x t
I d

x t
B

ϕ µ
ν ϕ ξ ξ

ϕ µ

ϕ µ
ν

ϕ λ µ

∞

=

∞

=

=

=

∑ ∫

∑
 

( ) ( )1

0

sin cos .
l

i i i
i

B
ξ

ξ

αλξ λξ
λ

=

=

 
= − 
 

             (45) 

Similarly, we can integrate the second integral 1I :  

( )
1 0 2

1

( ) cos
.i i

i
i i i

x t
I u B

ϕ µ

ϕ λ

∞

=

= ∑               (46) 

We can use representations (37) to test our proposed 
method. For IQP we have positive initial 
temperature (hot steel sample) and negative heat 
flux: 0 00, 0u ν> < .The temperature field is given 
by formula: 

( )

( )

0 2
1

0 2
1

( ) cos
( , )

( )sin
.

i i
i

i i i

i i
i

i i i i

x t
u x t u B

x t
v B

ϕ µ

ϕ λ

ϕ µ

ϕ λ µ

∞

=

∞

=

= +

+

∑

∑
            (47) 

We have the following expression for heat flux: 
2

0 2
0

( , ) ( , , )
l

u x t u G x t d
t t

ξ ξ∂ ∂
= +

∂ ∂∫  

0 2 0
0

( , , ) ,
l

v G x t d I I
t

ξ ξ∂
+ = +

∂∫  

2

2 0 2
0

( , , )
l

I u G x t d
t

ξ ξ∂
= =

∂∫  

( )
0 2

1

( ) sin
.i i i

i
i i i

x t
u B

ϕ µ µ

ϕ λ

∞

=

= − ∑  

Finally, we have: 
( )

( )

0 2
1

0 2
1

( ) sin
( , )

( )sin
.

i i i
i

i i i

i i
i

i i i i

x t
u x t u B

t

x t
B

ϕ µ µ

ϕ λ

ϕ µ
ν

ϕ λ µ

∞

=

∞

=

∂
= − +

∂

+

∑

∑
   

 

(48) 

We can calculate ( , ) ( )Tu x T u x=  and 

( , ) ( )Tt u x T v x∂
∂ =  by selecting 

arbitrary 0 00, 0u ν> < . We find 0 00, 0u ν> <   
by solving time reverse problem (34).  
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3.3. Numerical Results for Exact Solution 
We would like to use physically real parameters, 
and that is why we choose parameters from the 
intensive steel quenching process. Let us take 
typical steel parameters in our model and 
homogeneous initial conditions: 

3477 , 7900 , 14.9 ,

1 , 0.2 , 0.1 , 100,

m

i

J kg Wc k
kg K m m K

l m b m w m h

ρ= = =
⋅ ⋅

= = = =
 

0 01.5 , 600 , 500 .r
Ks u C
s

τ ν= = ° = −              (49) 

We obtain the solution from formulas (47), (48).  
In general, temperature and flux are x-dependent, 
but calculations showed that values are almost 
constant regarding space dimension. The next 
figures show temperature and flux distribution in 
time.  
If we take 1T =  as the final time, the values at this 
moment are the following: 

( , ) 8, ( , ) 640.T T
uu u x T v x T
t

∂
= = = = −

∂
 

  
          Fig. 1. The temperature in the time. 
 

 
           Fig. 2. The time flux as the time co-ordinate 
With the usage of the solution (40) of time reverse 
problem with these values as initial conditions: 

0
0

, .T Tt
t

uu u v
t=

=

∂
= = −

∂





 

We return to our initial conditions (43) now t T= . 
Calculation errors were negligible in our example 
( u∆  0.2 K). 
In the case of wave energy device is important to 
fixe devices interaction with the surrounding. It is 
shown in the Fig. 3. 

 
     Fig. 3. The wave energy [31] for the final 
time 20T = . 
The wave type energy change in the time is very 
interesting process, which can be useful for the 
increase of  wave energy power. 
These numerical results were obtained by Dr. Math. 
R. Vilums. Authors express their thanks to Dr. 
Vilums. 
 
4 Hyperbolic One Dimensional 
Problem 
Here we examine a one-dimensional hyperbolic heat 
equation, analogical to equation (*) from the 
beginning of paper. This equation may be connected 
with wave energy [14]: 

( )
2 2

*
2 2 , ,

0 ,0 .f

T T Tk T f x t
t t x
x l t t

τ γ∂ ∂ ∂
+ = − +

∂ ∂ ∂
< < < <

              (50) 

Here ft is the final time, /k k cρ= , *γ - is the 
coefficients obtained with application of the 
conservative averaging method for the reduction of 
the 3-D problem to the 1-D problem. 
Initial and boundary conditions are as follows: 

0 00

0 0

( ), ( ),

0, 0, .

t
t o

x

x xx

TT T x V x
t

T T T
x x k

ασ σ

=
=

= =

∂
= =

∂

∂ ∂ = + = = ∂ ∂ 

          (51) 

For the intensive steel quenching the function 
0 ( )V x is unknown and instead of two final 

conditions (4), (5) we can use only one additional 
condition: 
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( ) ( ), f fT x t T x= .               (52) 
 
4.1. Reduction of Hyperbolic Problem to the 
System of Ordinary Differential Equations 
To reduce the problem to ordinary differential 
equation we use finite difference method with 
uniform grid , 0, ,jx jh j N Nh l= = = . We use 
second order approximation for partial derivation of 
second order respect to x  and for initial problem 
for hyperbolic heat equation (50), we obtain system 
of ordinary differentia equations of second order in 
the following matrix form: 

*

0 0

( ) ( ) ( ) ( ) ( ),
(0) , (0) .

U t U t kAU t U t F t
U U U V
τ γ+ + + =

= =

 



          (53) 

In formula (53) we have the column-vectors of 
1N +  order 0 0( ), ( ), ( ), , , ( )U t U t U t V U F t  with 

elements 

 
( , )

( ) ( , ), ( ) ,j
j j j

T x t
u t T x t u t

t
∂

≈ ≈
∂

                   (54) 

( )

2

02

0

( , )
( ) , (0) ( ),

(0) ( ), ( , ), 0, .

j
j j j

j j j j

T x t
u t v V x

t
u U x f t f x t j N

∂
≈ =

∂
= = =



 

Here A  is the 3-diagonal of 1N +  order in the 
form: 

     2

2 2 0. . . 0 0 0
1 2 1. . . 0 0 0

1 . . . . . . . . . . . . . . . . . . .
0 0 0... 1 2 1
0 0 0... 0 2 2

A
h

hσ

− 
 − − 
 =
 

− − 
 − + 

. 

 
4.2. The Discrete Spectral Problem 
The 3-diagonal matrix A  of 1N +  order can be 
represented with following difference operator of 
second order approximation [27]: 

( )
( )
( )

2
1 0

2
1 1

2
1

2 , 0,

2 , 1, 1,

2 2 , .
j j j

N N N

y y h j

Ay y y y h j N

y y h y h j Nσ
+ −

−

− − =
= − − + = −

− − + =

  (55) 

Using two vectors ,m ny y scalar product:   

( )
1

0 0
1

1,
2

N
m n m n m n m n

j j N N
j

y y y y y y y y
−

=

  = + +  ∑ .  

We can easy prove: the operator A is symmetric and 
[ ], 0Ay y ≥  [27]. 
The corresponding spectral problem 

, 1, 1n n
nAy y n Nµ= = +  

has following solution [27]: 
1

0 1 1

2
2

1 1, ,..., , ,
2 2

4 sin .
2

n n n n n
n NN

n
n

y C y y y y

p h
h

µ

−
−

  
  
  


 
   

=

=

     (56) 

Here 
( ) ( )sin

cos , 0, .nn
j n j

p h
y p x j N

h
= =  

np  are positive roots of the transcendental equation: 

( ) ( )
( )

2sin
cot , 1, 1.

sin
n

n
n

p h
p l n N

h p hσ
= = +            (57) 

The constants 2 ,n n
nC y y =    can be obtained in 

following form: 

( )( )( )
( ) ( )

2 2 2 2
1 1 1

1
2

1 1
1

0.5 1 cos ,

sin / , cos

n n

N

n n j
j

C h A S A p l

A p h h S p x
−

=

 = + + 

= = =∑
 

( ) ( )( )
( )

cos sin
0.5 1 .

sin
n n

n

p l p l h
N

p h

 −
= − + 

  
 

Calculated ,n ny y   finally we have the 

orthonormal eigenvectors ,n my y  with the scalar 

product ,,n m
n my y δ  =  . Here ,n mδ  is the Kronecker 

symbol. It means, that we have matrix A , which 
can be represented in form: 
 .TA PDP=                 (58) 
Here the column of the matrix P  and the diagonal 
matrix D  contains M  orthonormal eigenvectors 

ny  and eigenvalues , 1,n n Mµ = correspond, 

where 1M N= + . From TP P E=  follows that 
1 .TP P− =  

Now we examine spectral problem for differential 
equation and finite difference scheme with exact 
spectrum [26], [28]. The solution of the spectral 
problem for differential equations 

( )2( ) ( ) 0, 0, ,
(0) 0, ( ) ( ) 0

y x y x x l
y y l y l

λ

σ

′′ + = ∈

′ ′= + =
 

is in form 
( )1

2
2 2

2 2

( ) cos ,

1 .
2

n n n n

n
n n

n

y x C x

C l

λ λ

σλλ
λ σ

−  =  
 

= + + 

              (59) 
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We have 

( ) ,
0

, ( ) ( )
l

n m n m n my y y x y x dx δ= =∫ . 

The eigenvalues nλ  are positive roots of the 
transcendental equations: 

( )cot , 1.n
nl nλλ

σ
= ≥                  (60) 

For the scalar product ,n my y    the integral 

( ),n my y  is approximated with trapezoidal formula 
and in the limit case if 0h →  then from (57), (60) 
follow 2.n nµ λ=  
For the difference scheme with exact spectrum [26], 
[28] the matrix A  is in the form (58) and the 
diagonal matrix D  contains the first 1N +  

eigenvalues 2 , 1, 1k k k Nδ λ= = +  from the 

differential operator 
2

2x
∂
∂

 correspondingly. 

 
4.3. Solution of the Discrete Problem (53) 
The solution of system (53) we achieve by usage of 
the representation of matrix TA PDP= . From 

transformation ( )TW P U U PW= =  follows the 
separate system of ordinary differential system: 

( )

*

0 0

( ) ( ) ( ) ( ) ( ),
(0) , (0) , ( )T T T

W t W t kDW t W t G t
W P U W P V G t P F t
τ γ + + + =


= = =

 



(60) 

Where  ( ) , ( )W t G t  are the column-vectors of  M  

order with elements ( ) ( ), , 1, .k kw t g t k M=    
The solution of this system is the function: 

( ) ( )

( ) ( ) ( ) ( ) ( )

2 2

0

1( ) sinh

sinh 0
0 cosh 0 .

2

t t t

k k k
k

k k
k k k

k

w t e t g d e

t w
w t w

ξ
τ τκ ξ ξ ξ

τκ

κ
κ

κ τ

−
− −

 = − + × 

   + +  
   

∫



 

(61)

                                                                        

 

Here 
*

2

1 , , .
4

k
k k k k k

kd d
k
γκ δ δ µ

τ τ
= − = + =  

If 4 1kkd τ > , then the hyperbolic functions are 
replaced with the trigonometrical and the 

parameter 2

1
4

k
k

kdκ
τ τ

= − .  

If 0kκ = , then 

( ) ( )

( ) ( ) ( )

2

0

2

1( )

0
0 0 .

2

t t

k k

t
k

k k

w t e t g d

w
e t w w

ξ
τ

τ

ξ ξ ξ
τ

τ

−
−

−

= − +

   + +  
   

∫



 

 
4.4. The solving of the inverse problem 
For the inverse problem the vector 0V  in the 
formula (53) is unknown. We have additional 
condition (52): 
( ) .f fU t u=  

Here fu  is the vectors- column with elements 

( ), , 1, .f k f ku T x k M= =  
The analytical solution of this problem can be obtain 
from (60) replacing the second initial condition 

( ) 00 TW P V=  with ( ) T
f fW t P u= . 

The solution is: 

( )
( ) ( ) ( )2 2

sinh
( ) 0

sinh

ftt
k

k k f k
k f

t
w t e e w t w

t
τ τ

κ
κ

−  = − ×
 

 

( ) ( ) ( )

( ) ( )

( ) ( )}

2

0

2

0

1cosh sinh

1 sinh

cosh 0 .

ft

k f k f k
k

t

k k
k

k k

t e t g d

e t g d

t w

ξ
τ

ξ
τ

κ κ ξ ξ ξ
τκ

κ ξ ξ ξ
τκ

κ


 − −   

 + − + 

∫

∫

 

(62) 
Here ( )k fw t  are the components of 

vector ( )fW t . From representation (62) follows 
that the second condition is in the form: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

2

0

0

(0) 0
sinh

1cosh sinh

0 / 2 , 0 .

f

f

t
k

k k f k
k f

t

k f k f k
k

k

w e w t w
t

t e t g d

w V PW

τ

ξ
τ

κ
κ

κ κ ξ ξ ξ
τκ

τ


= − ×




 − −   

− =

∫





 

When replaced this expression in (61) we obtain the 
solution (62).  
If ( ) ( ) 0k f kw t g t= = , then 

( ) ( ) ( )0
(0) 0

2cosh
kk

k k
k f

w
w w

t
κ

τκ
= − − . 
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For Fourier method, we obtain the Fourier 
coefficients ( ) ( ), 0k kw t w  from formula (62), 
where 

( ) ( ) ( ) ( ) ( )0
1

, , 0k f f k k k
k

w t u y V x w y x
∞

=

= =∑  . 

 
5 Some Numerical Results 
Here we look the intensive steel quenching for 
Carbon steel with these physical properties: 

360.5 , 7870 , 434 ,W kg Jk c
mC m kgC

ρ= = =  

6

30, 0.000017713, 0.1;0.5,
0;10;3 10 , 20, 0.1;1.

k
N l

α τ

γ

= = =

= ⋅ = =
 

Here we give only one result. This is comparison to 
the approximation by function from integral 
parabolic and exponential spline [22]-[25] for two 
different lengths of interval [0, ]l . 
As example for comparison we use solution of such 
boundary value problem: 

( ) ( ) ( )2 , 0, ,z a z

T z
k b T z f z L

z z
 ∂∂

− = ∈ ∂ ∂ 
     (63) 

( ) ( ) ( )0
0, 0.z

z z z

T T L
k T L

z z
α

∂ ∂
= + =

∂ ∂
 

Here 2 2 , .yx
a

x y

kkb f const
L L

π= + =  

The exact solution is: 

( ) ( )

( ) ( )

1 12
1

2
1

1 1 1

cosh , ,

/ .
sinh cosh

a

z z

z a

z z z z

f bT z C b z b
k b k

f bC
b k b L b L

α
α

= − =

=
+

 

The averaged value is: 

( ) ( )11
2

1 10

sinh
.

zL
za a

z
z z

C b L fT L T z dz
b L k b

−= = −∫  

The hyperbolic approximation with parameter za   
we use such function: 

sinh
2

( )
2sinh

2

z
z

a
z

z
z

La z
U z T mL

La

  −    = + +
 
 
 

 

( )

( )

2

0
2

0

sinh
2

,
4 sinh

2

sinh
1 , .

cosh 1

z
z

z
z

z z

z z z

z z z

La z
eG A

La

a L
a L LA G

a L k

   −      + −
  

    

−
= =

−

           (64) 

We have:  
( )( )

( ) ( )
( )

1

1 0

2

/ 0.5 2 ,

0.5 cosh 0.5 , 0.25 1 ,

/ , 2 / .

a
z z z z z

z z z z

a
a z z z z z

mk e a T Ga A d d

L a a L A A

T f B g b B d L

= = + + =

= −

= + =

 

Integral parabolic spline for one segment has 
form [22]-[25]: 

2

2

( ) 12( ) ( ) ,
2 12

/ 0.

z

a z

z

z z

LzLU z T m z eG
L

G L k

 − 
= + − + − 

 
 

= >

(65) 

Boundary conditions give the same values for 
coefficients ,m e , and 1 1/ 6, 1, 0.z zA d a= = =    
We can use also the hyperbolic spline with two 
parameters za and 0za  replaced (64) in the 
multiplicative for mG  the parameter za with 0za . 
Then the maximal error δ is equal to zero for every 
values of the parameters (63), if 0, / 2.z za b a b= =   
In the following figures 3 and 4 we show that we 
have approximations (64) and (65) approach the 
solution, obtained for 6, 81, 30,z zk b a= = =  

80000, 0.1a zf L= =  (fig. 3, with one parameter 

0, / 2z za b a b= =  and  0.0188 corresponding for 
parabolic and hyperbolic splines), 1zL =  (fig.4, for 
two parameters 0, / 2, 1.157z za b a b δ= = = , for 
hyperbolic spline with one parameter 

, 0.0288za b δ= = ). 
The next two figures show that hyperbolic 
approximation is really much better as 
approximation with polynomial function. 
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                      Fig. 3. 0.1, 81.z zL a= =  
 

 
                     Fig. 4. 01, , / 2.z z zL a b a b= = =   
 
 
6 Conclusions 

We have constructed some solutions for direct and 
time inverse problems for hyperbolic heat equation. 
The solutions for determination of initial heat flux 
are obtained in closed analytical form: as triple 
series. In second part of paper we investigate the 
hyperbolic problem for wave equation. As was 
mentioned earlier the wave energy change in 
the time can be very useful for invertors to 
maximise the wave energy power. By finite 
difference method we reduced this equation to 
system of ordinary differential equations. The 
results of calculations show, that hyperbolic 
approximation is better than integral parabolic 
spline. We will explain in the future our results for 
different boundary conditions and make errors 
analyse. Bigger evolution is to develop 
approximation for integral splines with all three 
types of boundary conditions for partial differential 
equations. 
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